
DevOps, Platform Engineering, and
Newtonian Operations: Rethinking
change and stability in delivery

By Mike Peachey

Principal Platform
Architect

There is a tendency in the industry to view a project that
is not being changed as “at rest”, and a project that is
being changed as “in motion”, but this has led to wasteful
investment in change that serves little purpose.

 • A project not being changed is not at rest, it is in motion at a
constant velocity

 • A project being changed is not in motion, it is changing
velocity (Δv)

While “velocity” has been appropriated by agile
frameworks, we are using it here in the Newtonian sense, as
a vector quantity with both magnitude and direction.

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis
cogitur statum illum mutare.

Law I: Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to
change its state by the forces impressed.

Sir Isaac Newton, Philosophiæ Naturalis Principia Mathematica, 1687

1

Applying Newtonian thinking to project delivery could be
transformative, addressing change as the means to invent or
improve, but normalising the use of necessary and sufficient
change only when appropriate, not simply as a demonstration
of agility.

Compounding this approach with the use of accelerators
that preconfigure a project or a solution, we can accelerate
a project directly to a functioning velocity with very little
cost, minimising the need for changes and maximising
business value.

Challenge 1: Newtonian Operations
The effort to establish the Platform Engineering role has
eclipsed the criticality of the Operations role.

What is meant here, is that just because a project is not
undergoing active modernisation, migration or feature
development does not mean it is stagnant. It lives and
breathes and requires Operations role(s) to keep it alive.
Operations acts to counter resistant forces that would deplete
the momentum put into place by Development and Platform
Engineering. Without operations, the project will decay until
it must be replaced. With good operations, the limit of a
project’s lifespan is only its usefulness to the business.

Operations and Platform Engineering are not the same

Platform Engineering is closer to Development than it is
to Operations. If it wouldn’t cause confusion, it would be
better to call them “Platform Development” and “Application
Development”, or “Platform Engineering” and “Software
Engineering”, but the terms we have are the terms we must
work with to achieve common understanding.

Platform Engineering is about creating the platform
that the software applications run on, and the software
development lifecycle tooling that the software is developed
with. Operations is about keeping the platform running, and
keeping the software and its data secure, durable, available
and under observation.

Platform Engineering and Software Development however
are much more similar. While being very distinct from one
another, they share a creative nature:

 • Developing software requires highly-specialised
depth-first skillsets and generally produces flexible and
mobile artifacts

 • Developing platforms requires highly-specialised
breadth-first skillsets and generally produces rigid and
immobile artifacts

DevOps 2025: Newtonian delivery 2

What is the solution?

ideally the chronology of a project might be:

The Platform role creates the core platform,
and the software development lifecycle tooling.1

Platform hands over the core platform to the
Operations role.2

Platform hands over the software development
lifecycle tooling to the Development role.3

Platform continues to develop any bespoke
platform requirements that are non-blocking. 4

Development creates the software.5

Development, Platform and Operations work
together to deliver the software to production. 6

Development continues to develop the
software as required by the business. 7

Operations keeps the platform running, and the
software running on the platform. 8

Operations picks up from both disciplines, acting as a
customer and supporter of both, focusing on robust and
secure delivery and support of the production system and
its consumers. Too often the question is asked “Who will
be responsible for managing this service once it has been
delivered?”, and no answer is yet known.

It is a lot more obvious for a system that will be used by the
public, but in other cases can be overlooked. Whether a
presumption that Development will continue to manage the
service, or that no management will be necessary, or that it
is a problem for the future, the result is the same: inefficiency,
instability, misallocation of people and resources, missed
opportunities, and decay.

Do not take this as a suggestion that the people working
in these roles must be separate, or that there must be
independent teams. As highly skilled individuals with wide
and varying levels of experience, sometimes the roles can be
performed by the same people, or by the same team, but the
roles and management of their tasks must be understood to
be distinct.

To assume that any skilled technical person can properly fulfil
all of both or all three roles is short-sighted, but filling roles
with the right portion of time from the right people at the right
time can be perfectly astute, so long as you don’t lose sight of
how any compromises may be addressed in the future.

The larger a project or a business, the more necessary it is
to have distinct teams per role, but the smaller a project or a
business, the more likely it is that the roles will be performed
within a single team. This likely will be at the cost of a lack
of depth of experience in each role, and a much higher
dependency on reusable patterns and accelerators to
achieve high-quality, simple and low-maintenance results.
It is in these smaller projects, where employing a high
quantity of individuals with deep but narrow experience is not
feasible, that the most benefit can be gained from the use of
accelerators.

The other key risk of misaligning these roles and tasks is in
project management. So many projects have suffered from
the failure to properly handle operations tasks when there is
no dedicated Operations team. “Maintenance”, “patching”,
“support activities”, etc. are all too often seen as not delivering
value and are left to the end of the project or are not done at
all, and this can be a costly mistake.

Operations tasks aren’t “not delivering value”, they are
“maintaining value”. They are the tasks that keep the
project running and delivering value to the business. They
are the tasks that keep the project from decaying until it
must be replaced. However, often they do not align to the
“agile” mindset. They are not “valued features”, they are
“maintenance costs”.

 • How do you insert repetitive tasks into a sprint?

 • How do you justify the delivery time for those tasks
to stakeholders?

 • How do you prioritise them over features?

 • How do you measure the value of them?

 • How do you measure the cost of not doing them?

In summary

Dev and Ops must work together to deliver and
then maintain; however, Platform Engineering
is not Ops. Accepting Platform Engineering as
an independent capability has been a big leap
forwards but must not come at the expense of
well-managed Ops by believing they are one and
the same.

Platform Engineering sets the foundations for
Developers to develop, and Ops to operate, and
all three must work together harmoniously.

DevOps 2025: Newtonian delivery 3

Why aren’t we doing this already?

We live in a complicated and evolving world where success can be achieved in infinite combinations and can be extremely hard
to measure. There are too many patterns to follow, too much guidance borne of limited experience. Too much risk associated with
doing something different than has been done before. Cultural change takes time.

Some projects will use a dedicated “maintenance” epic that
never ends, to which a minimum number of points per sprint
must be allocated. Some may reject the idea of an epic that
isn’t finite. Projects that use Kanban are more adaptable to
operations tasks. Some will create an independent board
for operations tasks that reports velocity independently of
the main development work. There are many approaches,
but those that attempt to shoehorn operations tasks into a
development workflow often suffer for it.

The development and platform backlogs are for tasks that
drive change. They take the project from one state to another.
Whomever is working on it, the operations backlog is for tasks
that maintain the project in its current state. They keep the
project running. They keep the project delivering value to
the business.

This is where we return to the original emergence of agile
DevOps. DevOps is a culture, not a role or a technical practice.
For a time, DevOps was used to provide a working title for
Platform Engineering, using a label that had been accepted in
the C-suite to get the necessary investment.

Now that Platform Engineering is more established, it is time
to brand it properly as a development activity. It is time to
recognise that Software Development, Platform Engineering
and Operations must be united but separate; each funded,
resourced and managed appropriately to the value
they provide.

What is the solution?

Architecture is not a singular function. To be effective, a
project “Technical Architect” must have extensive knowledge
in many specialist domains, making it incredibly difficult
to grasp sufficient depth in each. Relying on the input
of Engineers in each field can result in a patchwork of
compromises, rather than a cohesive and unified design.

An enterprise project may require a team of Architects, each
with their own specialism and responsibilities. For example,
in a large-scale project with 100 Engineers spread across
multiple domains, an Architecture team may comprise:

 • Enterprise Architect - Overall vision and strategy of
the project

 • Application Architect - Design of the business logic being
implemented by Software Developers

 • Platform Architect - Design of the platform, including
cloud and on-premises infrastructure as well as software
development lifecycle tooling such as CI/CD pipelines

 • Data Architect - Design of the data storage and
processing systems

 • AI Architect - Design of the AI models and the systems that
run them

 • Security Architect - Design of the security systems that
protect the project, ensuring clarity and standardisation of
compliance across all domains

DevOps 2025: Newtonian delivery 4

Challenge 2: Newtonian Platform Architecture
While Platform Engineering has become more established,
and projects have accepted the need for Platform Engineers
as a distinct role, Platform Architects are still a rare breed.

The role of Platform Architect is a critical one, responsible for
the design of the platform, ensuring it meets the needs of the
business and the Development teams. The Platform Architect
must understand the needs of the business, the capabilities
of the Developers and Engineers, and the capabilities and
constraints of a rapidly-evolving suite of technologies and
services. They must be able to design a platform that meets
these needs and be able to communicate this design to all
involved. They must be able to work with the Developers and
Engineers to ensure that the platform is built to the design,
and that it meets and continues to meet the needs of
the business.

This role is not new, often found under the umbrella term
“Solutions Architect”, but rarely is it distinct and platform
specialised. Usually, Platform Architecture is led by a Technical
Architect with design authority and a background in Software
Development, but performed by a combination of Developers
and Engineers, each with their own perspective, priorities
and experience.

This can lead to a lack of coherence in the design and can
result in a platform that does not meet the needs of the
business or the Developers.

Almost without exception it leads to unnecessary complexity.
That complexity then becomes the basis for a litany of
wasteful iterations each aimed at improving the development
experience, some successful, some not, but ultimately
spending a lot of time and effort iterating through one form of
compromising complexity after another.

These architectural ownership gaps have become more
visible since the recent explosion of the data and artificial
intelligence (AI) domains. These each have their own unique
requirements, and specialist knowledge is required to
create efficient enterprise-ready solutions. There are many
untrodden paths that mean production services can still
feel like proofs-of-concept. Many organisations have begun
to invest in the domains but have not accounted for the
specialised experience required in Architecture and Design or
are not yet able to find it.

These domains are usually already recognised as requiring
oversight but fail to allocate direct technical responsibility
and accountability for detailed design to the individuals.
Each Architect role may be filled, but by an individual skilled
primarily in management and policy, rather than the technical
details and nuances of their domain as it applies across all
the relevant technologies; often generating complexity and
reducing quality, efficiency and flexibility.

In some domains, security being a frequent example, there
will be an oversight team. The team will be responsible for
the security of the project but will work at the microscale
with Engineers in each domain to ensure that the security
requirements are met, rather than at the macroscale to
implement a coherent security strategy across the project
aligned to the technology and the way it is being used.

Giving the responsibility of Architecture to an Engineering
team, rather than to individual leaders in each domain can
lead to a lack of coherence in the design and can result in
inefficient and ineffectual solutions that are less cost effective
or efficient than not having the solution, while also difficult to
maintain and extend.

Specifically concerning the platform domain - one that is
frequently not acknowledged as an independent architectural
concern - the challenge is to recognise the need for a distinct
Platform Architecture function, and to invest in the skills and
knowledge required to fulfil the role. This does not require an
overhaul of existing teams or significant resource investment,
but a change in mindset, recognising the importance
Architecture plays in a successful delivery, and reorganising to
incorporate a distinct Platform Architect role.

DevOps 2025: Newtonian delivery 5

In a team where the most experienced Engineer is acting as a
de facto Platform Architect, the role of Platform Architect can
be created by giving them the authority and responsibility
to design a coherent and efficient platform, and to work as a
peer with stakeholders and other Architects to ensure that the
platform meets the needs of the business and the Developers,
while remaining as simple as possible.

In a team where there is no clear leader in the platform
architecture domain, it should be acknowledged that a gap
exists. It’s not necessarily a case of investing in a full-time
Platform Architect role. Short-term consultancy may be
sufficient to provide the necessary guidance and direction,
and to help the team to develop the skills and knowledge
required to achieve the desired outcome.

Why aren’t we doing this already?

Agile has been a necessary revolution in Software
Development, but it has also led to a lack of focus on
Architecture, and short-sighted decision making. Agile has
led to a focus on delivering features quickly, rather than on
delivering a coherent and efficient solution.

Any upfront investment in Design can be seen as bad practice
because it is “Waterfall” and therefore not “Agile”. In truth
neither is a tautology and even “WAgile” can be misdirecting
if it is seen as a conjunction of two separate practices rather
than a single practice that selects the appropriate elements
of each.

Even within the pure-Agile mindset, Platform and Software
Development have unique needs. There are many software
development projects for which pure scrum is entirely
appropriate, but for the platform aspects of the project, it is
not. Platform timescales are massively impacted by external
factors, and often many tasks are akin to mini projects. Trying
to break work into time-bound sprints and measure value via
sprint-velocity can, and often does, cause friction and
box-ticking rather than accurate progress measurement.
This has been a key factor in the problems experienced by
teams and Engineers labelled as “DevOps” teams, where the
platform is seen as a subset of the Software Development.

Where software changes can be made arbitrarily, akin to
rearranging furniture or even erecting or knocking down
walls, platform changes are usually more like changing the
foundations of a building or preparing new foundations for an
extension, frequently while the building is in use. They are not
arbitrary, they are not quick, and they are not easy to undo.
They require careful planning, consideration, and design.

Possibly the most impactful issue facing agile projects over
the last decade has been a lack of consistent direction.
Solving problems in isolation, without adherence to a
common long-term goal has led to arbitrary tool selection,
CV-driven development, and a lack of congruity in design.
The result has been unnecessarily complex and inefficient
solutions, held together by bespoke, fragile automation. The
absence of this direction comes from abandoning “Big Design
Up Front” and “Waterfall”, and instead “empowering the
teams” but the result is often a lack of any design at all.

The problem with Waterfall is not the design, it is the lack of
iteration. The problem with Big Design Up Front (BDUP) is not
the design, it is the lack of flexibility. There is nothing wrong
with creating a design, the problem is in creating a design
that is inflexible and unchangeable.

The solution is to create a design that is flexible and
adaptable, that can be changed as the project progresses,
and that can be iterated upon to meet the changing needs
of the business and the Developers. So long as all involved
are working towards a common goal that is well understood,
changing the goal is relatively easy, having the same impact
on everyone, all making the same changes in the same
direction. This principle applies as much to simple matters
like coding standards as it does to project architecture.
XKCD humorously illustrates a common complaint about
standards: “There are 14 competing standards, we need one
universal standard, now there are 15 competing standards.”

The joke highlights that each of the 14 existing standards
aimed to solve everything, and introducing a new one only
exacerbates the problem. The real solution, though contrary
to human nature, is to adopt a single standard that everyone
agrees on, whether it’s an existing one or a new one.

For instance, if decided that “all strings should be single
quoted,” this is entirely reasonable so long as all existing
code is updated. However, if the project’s priorities, funding,
or timelines do not permit the change to existing code, then
it should not be applied for new code either. If all existing
code adheres to a different standard, the change might be
straightforward and automated. But with a mix of standards,
it could become complex and time-consuming; especially if
you have automation that relies on assumptions about the
standard you follow.

Consistency is the key. The solution isn’t to have no design, or
to allow competing designs, but to have a single design that
everyone follows. If change is justified, then make the change.
If the change is not justified, then don’t make the change.
Don’t make the change in one place and not in another just
to address today’s problem. While a team can attempt to
manage consistency via peer review, only one person ought
to be accountable for ensuring it is maintained.

In a team where the architecture is being led by a generalist
Technical Architect, it should be acknowledged that the
Technical Architect may not have the necessary skills and
knowledge to design a coherent and efficient platform. The
Technical Architect may be able to provide valuable input
but may not be able to design the platform on their own. In
this case, the Technical Architect should be supported by
a Platform Architect, who can provide the necessary skills
and knowledge to design the platform, and to work with the
Technical Architect to ensure that the platform meets the
needs of the business and the Developers.

https://imgs.xkcd.com/comics/standards_2x.png

DevOps 2025: Newtonian delivery 6

In summary

For each distinct specialist technical capability:

 • Have a “target design” that is well understood
and agreed upon, that is aligned to the
other capabilities

 • Make one person responsible for that vision
who has the knowledge and experience to
design a coherent and efficient solution within
the problem domain

 • Give them the authority to make decisions and
the responsibility and accountability to ensure
that the vision is realised

 • Delegate the role to another person in the
case of absence rather than distributing the
responsibility and risking inconsistency

 • Make sure everyone knows the vision and is
working towards it

 • Treat change as expected and normal, so long
as it is justified

If this is done correctly, then there is a significant
hidden benefit. Domain-specific architecture
design for a project does not have to be a
full-time role. At the beginning of a project, it is
a critical function, but as the project progresses,
the need for the role diminishes. Ways of working
become attuned, architectural norms become
established and change frequency reduces.

The role can be reduced to a part-time role, or
even a consultancy role, and the project can
continue to function effectively. The role can
be reactivated when a significant change is
required, or when the project is at risk of losing its
way. In the meantime, the person who filled the
role can either move on to another project, or be
assigned to multiple projects, providing the same
service to multiple teams.

This can be a further benefit, allowing the person
to bring their experience from one project to
another, and to help multiple projects avoid the
same pitfalls and to achieve the same successes,
with standardisation and consistency across the
organisation.

The role of the domain-specific architect adheres
to Newton’s first law of motion. The role is the
unbalanced force that drives change. When
stable and consistent, the project may continue
in the same direction at the same velocity,
requiring intervention only for course correction.

Challenge 3: Newtonian Platform Engineering
Focus on what you do best and outsource the rest

Now that the modern project has recognised the need for a
distinct Platform Engineering function, the next challenge is to
determine how to deliver this function effectively. The Platform
Engineering function is a complex and multi-faceted role,
requiring a wide range of skills and knowledge.

In many projects however, the Platform Engineering function
has very little relationship to the core business of the project.
The Platform Engineering function is a support function,
providing the infrastructure and tooling that Developers need
to deliver the project. The Platform Engineering function is
not the core business of the project nor the reason that the
project exists, it is a means to an end.

When Platform Engineering is not the core business of the
project, as little of the Platform Architecture as possible should
be bespoke. As far as is reasonable and possible the platform
should be:

 • Standardised and generic, to reduce the complexity and the
cost of the platform

 • Simple, to reduce the risk of failure and the cost of
maintenance

 • Efficient, to reduce running costs

 • Secure, to protect the project from malicious intent and
accidental harm

Achieving this is difficult in isolation. When no standards
exist, they must be created. When technology has not been
selected, it must be evaluated, selected, configured and
implemented. When no software development lifecycle
(SDLC) processes exist, they must be decided upon, and
tooling must be implemented to support them, and so on
for infrastructure as code (IaC), continuous integration (CI),
continuous deployment (CD), monitoring, logging, security,
compliance, etc.

As a consultancy with over 30 years in the industry, BJSS has
a wealth of knowledge and experience of the technologies
and patterns available to solve common problems, and to
deliver projects. Without this, one might be reliant solely on
publicly available examples and vendor-provided solutions,
which even in the best cases often do not integrate or function
well outside of very tightly bound ways of working.

While different projects have different core technology
requirements and commonalities that benefit from shared
learning, what is more important are patterns that can be
applied wholesale for frequently encountered situations.
These patterns can be applied to the platform, the software
development lifecycle, the data, the AI, the security, and so on,
putting together proven approaches known to be suitable for
enterprise project deliverables.

DevOps 2025: Newtonian delivery 7

What is the solution?

Platform as a Product

Let us take for example a project that has a simple
requirement: “Deliver a serverless web application that
exhibits the company’s brand, provides details about
the company, and allows users to log in and view their
account details”.

What are the initial steps normally taken to deliver
this project?

This list does not cover all the steps required to deliver the
project, but a significant portion of the basics. The question is,
how much of the work is necessary to deliver the project? How
much of the work is unique to the project?

DevOps 2025: Newtonian delivery 8

It could be argued that of the below steps, only the following
are wholly unique to the project:

 • Write the infrastructure code

 • Write the application code

 • Determine the production support strategy according to
business needs

Given mostly reusable infrastructure code for such a common
situation, and a generic CMS-based application, even these
tasks could be stripped bare.

Select a cloud provider Configure and secure the account(s)Create an account or accounts

Select an authentication provider

Select development
tooling solutions

 • Code repositories

 • CI/CD pipeline tooling

Determine the approach for the software
development lifecycle

 • Select GitFlow, GitHub Flow,
trunk-based development, etc.

 • Select an approach to artifact
versioning and storage

 • Repository management: mono-repo
or multi-repo?

Select a programming language
and web framework

Select a database

Select and initialise a
documentation approach

Select (if more than one) a package
management/dependency
management solution

Create a repo

Initialise the project structure code
and its integrated tooling aligned to
the selected software development
lifecycle approach

Configure the repo settings

 • Branches and branch protection

 • Pull request settings

 • Code owners

 • Automation hooks

Select and configure a linting solution

Select and configure a testing solution

Select and configure a code
coverage solution

Determine the Path to Live strategy,
including the environments required, e.g.

 • Local development

 • Cloud-deployed feature environments

 • Development

 • Staging

 • Pre-production

 • Production

Create CI/CD pipeline(s)

 • Select and configure the selected CI/
CD pipeline tooling

 • Configure the pipeline(s)
 • Build and test on pull requests

 • Conditions for pull requests to be ignored

 • Automatically deploy to
feature environments

 • Automatically destroy
feature environments

 • Automatically deploy to development

 • Automatically or manually deploy to
staging/pre-production/production

 • Approval flows

 • Artifact publishing

 • Build caching

 • Post-deployment E2E/smoke testing

Determine the Infrastructure as Code
(IaC) strategy

 • Select the IaC tooling

 • Define the IaC SDLC

 • Determine an environment
management strategy

Determine a local/remote
testing strategy

Define a security strategy, with tooling
selected for compliance, vulnerability
scanning, supply chain security, for
the platform

Define an observability strategy, with
tooling selected for metrics, logging,
monitoring, alerting and reporting

Define a security strategy, with tooling
selected for compliance, vulnerability
scanning, supply chain security, for the
application software.

Write the infrastructure code

Write the application code

Determine the production support
strategy according to business needs

In summary

The industry has become lost in the diversity of solutions that achieve the same goal, and in putting
in time, effort and resource to do the same thing - slightly differently - everywhere. Our experience of
Platform Engineering at BJSS has led us to think bigger when it comes to undifferentiated heavy lifting.

We do more than just establish a secured location for development to happen. We commoditise our
experience as we identify the patterns that are being unnecessarily repeated. For some projects we can
make the entire software delivery lifecycle a plug-and-play experience. By doing so, we can implement
a more hands-off approach to Platform Engineering; focusing resource on solving problems that haven’t
been solved before, instead of the ones that have.

You can find out more about BJSS on our website, or get in touch here.

Why aren’t we doing this already?

Whilst organisations are starting to establish Platform Engineering teams, they are not maturing processes and ways of working
to extract value from the investment. The team can - and should - be concurrently building platforms as well as creating
accelerators to address the wheels that are most commonly and unnecessarily being re-invented in their organisation.

As a consultancy, BJSS has over a decade experience of Platform Engineering and is perfectly positioned to help organisations
these patterns and practices, and to share accelerators that will deliver the most value to organisations.

Combining knowledge of existing projects and leading-edge industry knowledge, BJSS has identified the most common and most
costly problems and creates the accelerators that will solve them.

Depending upon the project needs, the following may also be
unique:

 • Select a cloud provider

 • Select a programming language and web framework

 • Select a database

 • Select an authentication provider

 • Determine the Path to Live strategy, including the
environments required.

The business/project may choose to make even more
bespoke decisions but must accept that every one of them
is a cost, a potential source of delay and likely not relevant
to the core business of the project. Every other step is
something that could be delivered in complete and
ready-to-use form, as an accelerator. Any part of that
accelerator could be tweaked to make the most of the
possibilities of the technology, but the core of the accelerator
would be the same.

For every aspect of the accelerator that requires no bespoke
work, no platform engineering is required. Once it is delivered,
the project can focus on the unique aspects of the project.
The only Platform Engineering resource required is to deliver
remaining bespoke work, to further expand or customise the
accelerated platform, and to support application-specific
infrastructure needs.

This then can be seen again as an application of Newton’s
first law of motion. The Platform Engineering resource is the
unbalanced force that drives change. Once the accelerator
is delivered, and tweaked as desired, the project may
continue in the same direction at the same velocity, requiring
intervention only for course correction - except of course
application-specific bespoke infrastructure needs that cannot
themselves be accelerated or templated.

The additional conclusion we can draw here is that if the
Platform Architecture function is properly fulfilled, and
the generic aspects of the platform are delivered with an
accelerator, then much of the Platform Engineering function
can be delivered as a product. An initial deliverable is needed
to correctly implement the accelerator, but maintenance and
support can mostly be handled as an in-sprint developer or
operations task, with the Platform Engineering service acting
mostly as a support function.

The more generic and simple the project, the less ongoing
Platform resource requirement there is, allowing limited
resource to be focused on the most complex and
bespoke problems.

Copyright © 2025 BJSS Limited. 9

https://www.bjss.com/
https://www.bjss.com/contact-us

	2
	4
	7

